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Abstract. Following GrifEths we present some further methods in the Landau model, for 
higher order critical points. Techniques due to Arnol’d allow us to exhibit tile codimen- 
sion and incidence scheme of critical points in the theory for two and three order 
parameters. Unlike the procedures of Griffiths who analyses the global behaviour of the 
free energy, the results here aTe obtained by pasting local solutions together. That the 
combination of such strata is a complete description is an assumption valid in some cases. 

1. Introduction 

Griffiths has previously presented a classification scheme for phase diagrams, based on 
topological reasoning (Griffiths 1975). As a particular case, he analyses the global 
behaviour of the free energy in a Landau model completely for the case of one order 
parameter and partially in the case of two. Such global analyses are of course hard in 
general: for example, Griffiths’ results on the Landau model in two variables 

in the case aik = 0, j + k 3 3 depend on a factorisation property of some homogeneous 
functions of the fourth degree in two variables, and such lucky accidents are hard to 
come by. If we choose on the other hand, to look at the local behaviour of a function 
with a critical point at the origin, say, we can proceed to fairly high order in determin- 
ing the codimension and bifurcation scheme of the singularities. Of course, the global 
view is now lost but we can hope to recover it by pasting together local solutions and 
viewing the codimension of a function as a sum of the contributions from its critical 
point and its critical value. (Two co-existing singularities of lower codimension form 
an entity of higher codimension.) The meaning of and assumptions inherent in such 
analyses will, we hope, become clear in the following. First we recapitulate some 
definitions from the theory of singularities (Arnol’d 1972). 

2. Definitions for local singularities 

The word singularity is used interchangeably with critical point, i.e. the function we 
are considering has a zero and vanishing first (partial) derivatives at the critical point, 
supposed to be the origin as long as we look only at the local behaviour. 

Moreover we are interested in second and higher order phase transitions, i.e. in 
degenerate singularities where one or several coefficients of the second order terms in 
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a Landau expansion vanish at the critical point. The number of order parameters 
needed in a Landau expansion is the number of zero eigenvalues that the second 
derivatives (Hessian) matrix of the free energy with respect to the densities develops. 
This is termed the co-rank of the singularity since it is also the number by which the 
Jacobian (susceptibility) matrix drops rank. We shall assume that the co-rank is given. 
Krinsky and Mukamel (1975) have analysed a spin-2 Ising model illustrating this and 
other features of Landau-type theories. 

We are interested in the topological type of singularities, i.e. singularities which 
can be made equal after a continuous change of coordinates, are to be considered 
equivalent (Griffiths 1975). In the usual techniques of the mathematical theory of 
singularities (Arnol'd 1972) a classification is made of the diffeomorphic type, i.e. up 
to a smooth (infinitely differentiable) change of coordinates. To help determine the 
topological type we make the assumption that the critical point of the lowest order 
terms in an order parameter expansion is isolated (i.e. V f ( x ) =  O + x  = 0). We 
preclude therefore a line, plane, etc of singularities. This is not a restrictive assump- 
tion since most polynomials have only isolated singularities. 

We now have to define the codimension and the stratification of singularities in 
order to be able to provide the characteristic graph. The codimension of a singularity 
is the dimension of the space of functions with a critical point at the origin minus the 
dimension of the space of functions with the given singularity. Both spaces are infinite 
dimensional of course and to make the codimension a precise and calculable quantity 
mathematicians working in the C" (i.e. diff eomorphic) classification scheme gave the 
definition 

codimu) = dim M/A(f ) .  (2 ) 
M is the space (ideal) generated by the monomials x ,  y . . . (and so the space of 
functions vanishing at the origin) and AV) is the ideal generated by the Jacobian of f, 
which tells us to what order f vanishes at the origin. 

Thus if f= xz, MI$ is generated by (x ,  x .  x ,  x .  x .  x ,  . . . ) and AV) is generated by 
(2x, 2x. x ,  . . . ) which is the same thing. The codimension of non-degenerate 
singularities is zero as it is designed to be. 

Let us take (still with one variable) f ( x ) = x k i ' .  Then A ( f ) = M f  in obvious 
notation and 

which is, of course, the obvious result. We should perhaps note that the dimension of 
the space of homogeneous real valued polynomials of degree k in n variables is 

This is because the monomials x ; ' .  . . x>, Z ri = k form a basis and the 
cardinality of this set is the number of ways one can distribute k balls among n boxes. 

All this is of course well known and leads to the first conflict of the C" 
classification scheme with what one would want in a Landau-type theory. This 
concerns the first genuine fourth order singularity in two variables: 

f(x, y )  = x4 +(1 + a ) X 2 y 2 + a y 4  (3) 
(with a # 0, k1 to keep the critical point isolated). The above definition (2) gives 
codimU)= 8 and not 7 as we would obtain from the expansion in equation (1) with 

t The subscript 1 is designed to remind us that we are dealing with one variable. 
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ajk = 0, j + k  3 3  (Griffiths 1975). That is, there are ten conditions, three of which 
relate to the function having vanishing constant term and first partial derivatives. The 
proof that the codimension is 8 by formula (2) is relegated to appendix 1 which is the 
type of simple calculation of vector space dimensions one does in the classification of 
singularities. 

The difference between the two numbers relates to the unsuitability of a smooth 
equivalence classification for one requiring only continuous equivalence. The former 
is easier to do however, and, as is frequently done in other contexts, we shall first look 
at the diffeomorphic theory and then discard what is superfluous for the homeomor- 
phic scheme, Since requiring a coordinate change to be smooth is more restrictive 
than requiring it to be continuous, one obtains many singularities inequivalent under a 
diffeomorphism that become equivalent if only continuity is required. The form (3) is 
an example. If we say f - g cf is equivalent to g) if f ( x ,  y )  = g([(x, y ) ,  77 ( x ,  y)) where 

f(x, Y 1 = ( x2  + Y *xx2 +ay 7 (3 1 
and 6, 77 are required to be C” then a is invariant, i.e. fa =fa only if a = p (Arnol’d 
1974). In a topological classification, of course, a should not matter. In this particular 
case the above statements are easily understood geometrically. cy has the inter- 
pretation of a cross ratio of four lines and it is well known from projective geometry 
that: ( a )  the cross ratio is a projective invariant; and ( b )  if we allow continuous 
deformations, four lines with a given cross ratio can be mapped onto four lines with 
any different cross ratio?. 

So we define a codimension for the topological type of a singularity (assuming of 
course that we can determine the type). We subtract from (2) the number of 
parameters appearing in a diffeomorphic classification. As a justification for this we 
use the facts that the dimension of the space of points corresponding to singularities of 
given p =dim (M/A(f))+ 1 is equal to the number p of parameters needed (Gabrielov 
1974) and further that at least for polynomial functions with isolated singularities the 
number p $ fixes the topological type completely. So we use the following formula for 
the codimension C 

p = c+p + 1. (4) 
The fastest way of computing p, due to Kushnirenko (1975), is quoted without proof 
in appendix 2. 

In order to display a characteristic graph (Griffiths 1975) we need to know how 
singularities bifurcate. The natural assumption that the coalescing of singularities is 
the only way their topological type can changes is true for complex analytic functions 
(L$ DGng Trdng and Ramanujan, to be published), can be shown to be true for 
functions of up to three variables (and with isolated critical points for fixed values of 
any parameters). So we are justified in assuming so for two and three order 
parameters. 
t To make the appearance of parameters less mysterious, we may remark that the theory is concerned with 
generic singularities, i.e. singularities whose type does not change under a small deformation. This makes 
the introduction of parameters natural for degenerate singularities (Amol’d 1972, 1974). In general these 
parameters may not have a simple geometric significance. We get them because we allow only analytic 
instead of merely continuous scale changes, as explained above. 
t And not the codimension C. Care will have to be taken for spaces with the same p and different C: their 
characteristic balls may not in general split. 
I In the different context of the renormalisation group theory of critical phenomena the tricritical, tetra- 
critical, etc fixed points obtained have all been as bifurcations away from the trivial or Gaussian fixed points. 
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Our last comment in this section concerns the stability requirement imposed by 
thermodynamics, i.e. that the free energy be an absolute minimum. The typical form 
for the free energy at criticality will then contain only even powers of the order 
parameters. The global form for the free energy which will contain lower order terms 
and critical points of lower order computed with this free energy are not guaranteed to 
be absolute minima and their stability should be checked (Krinsky and Mukamel 
1975). For this purpose it might be useful to have a catalogue of both the stable and 
unstable points that arise in a characteristic graph of a stable critical point. We do not 
pursue the point here, since our aim is primarily to discuss the methods available. 

3. Fourth order singularities 

We quote some results obtained by techniques like those outlined in appendix 1. 
These techniques (Arnol’d 1972) will also give results for codimension for poly- 
nomials with cubic and other terms which are ignored in a thermodynamic theory. 

The singularity with non-vanishing fourth derivatives of lowest codimension is 
x 4 + a x 2 y 2 +  y 4 ,  a # *2. In general topologically distinct fourth order critical points of 
the form 

have codimension 7 + p + q .  The only critical points of lower codimension have 
co-rank 1, i.e. are of the form x Z k  (or y ” ) ,  k = 1,2 ,3 ,4 .  (This is not true if we include 
unstable critical points, e.g. x 3  + x y 3  has codimension 6.) Still within the local picture, 
the incidence scheme is determined by calculating the critical points into which the 
given singularity breaks up under small deformations. This is done by bifurcation 
theory so we build up a stratification of critical points (in this case the obvious one): 

D;q + D2+ D -+ C + B + A  

where we use Griffiths’ notation for A, B, C, D, DZ (Griffiths 1975) and then DFq is of 
course equation (5 ) .  From the techniques available for constructing an exhaustive list 
of critical points there are many singularities that look like cubics etc in the above 
incidence scheme if one wishes to include them. For example, between 0 2  and D one 
would get also 

D 2 + X +  Y + D  

where X = x 3 + x y 3  and Y = x 2 y  + y 3 ,  both of codimension 6 .  
In this classification scheme, the fourth order expansion in three variables with 

codimension 16 requires ten parameters to describe its normal form! Similarly the 
codimension 18 object consisting of the sixth order terms requires seven parameters. 
We can carry this out using algorithms checking for non-degeneracy (i.e. isolated 
critical points), order and codimension (appendixes 1 and 2) but we might be storing 
up against a famine that never arrives. There are no objects between codimension 
7 + p  + q and 16 if only even powers of x ,  y ,  z, . . . are allowed. 

4. Phase co-existence 

We have defined the codimension of an isolated critical point of polynomials. To 
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allow for phase co-existence we have to know global features of the phase diagram 
and not just the form of the free energy function at the critical point. There is no 
difficulty defining a codimension for phase co-existence 

e =number of critical points of f-'(+)- 1 (6) 
where f ( x ) I x = ,  O= 4. Here xo is a critical point and 4 the corresponding critical value. 
The definition then says = 0 if the critical values are all distinct. So we define the 
total: 

codim(f) = C + e. (7) 

This is effectively part of the method Griffiths uses in constructing his characteristic 
graph, In the mathematical literature it is proved that the hypotheses Griffiths 
introduces in his equation (3.3) and following it (Griffiths 1975) are consistent 
definitions for a space admitting a natural stratification. Formally a stratification of a 
topological space X is a collection of subsets Xo, X', . . . , X i , ,  . . which form a 
partition of X and XOUX' . . . UX' is open. If X is of dimension n a natural 
stratification would have Xi+' c 8' with X i  a submanifold of codimension i in X. For 
n dimensional Euclidean space a stratification can be defined by 

1 d j < j ' <  N (8) x. = x., 
I I ?  

for all non-negative integers N. Thus the ith stratum obeys i independent algebraic 
equations. 

For our case of the space of isolated singularities of homogeneous polynomials 
(plus higher order terms) we can associate with it a natural stratification: it seems clear 
that for points with the same codimension k the different partitions k = C + cor- 
respond to algebraically independent spaces from the definitions of C and e. Let us 
consider a function with N non-degenerate singularities SI . . . SN. Let us choose a 
specific order for them by & ( i )  = si, i = 1,2,  . . . , N. 

Then we can map a stratification of RN onto our space V of non-degenerate 
singularities (all of the same codimension) by choosing mutually disjoint neighbour- 
hoods Vi of the si and choosing &'€ V such that &' has a non-degenerate singularity 
at s i  in Vi (and no others). The required stratification is then the image of the one in 
RN by &', i.e. it is (&'(si), . . . , & I ( & ) ) .  

So we can stratify our space of isolated singularities whether degenerate or not and 
determine the incidence scheme in this way. 

We should note that b in equation (4) has the meaning of being the number of 
non-degenerate critical points that the given singularity can bifurcate into. 'Nearby' 
functions require CL parameters-including the constant term-to describe them 
(Arnol'd 1972). 

To get the entities corresponding to a given codimension k we are justified in 
partitioning k in various ways again rejecting contributions from singularities with odd 
powers of x, y ,  . . . . 

To get the global phase diagram however, we would need to know how many 
singularities of each type there were. The only global theory available is Morse 
theory, invalid in general for degenerate critical points (Milnor 1963). However in a 
thermodynamic theory with singularities being absolute minima we can use the Morse 
inequalities. We should emphasise that with degenerate singularities allowable in a 
global phase diagram the numbers N, that enter the inequalities are no longer the 
number of critical points with index r. Rather N, is greater than or equal to the 
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number of such critical points. With this caveat, the analysis proceeds as is usual in 
Morse theory and as has been described in connection with phase transitions recently 
by Mistura (1976). 

Carrying out the procedure described above we would get the graph in figure 1 
perhaps incomplete in its global aspects but complete in its local. 

3 _ _ _ -  Codim = 7 6 5 L 

Figure 1. Incidence scheme for singularity D2 which breaks up into p = 9 non-degenerate 
critical points on deformation. Knowing p, C and the generators of a singularity deter- 
mines the types available by bifurcation from it. The numbers of topologically equivalent 
but disconnected types are estimates obtained from p and the co-rank and denoted in 
parentheses beside the singularity. 

5. Conclusions 

In the case where a Landau expansion of the free energy in terms of order parameters 
displays a critical point in the lowest order non-vanishing homogeneous part, we can 
determine the codimension and the form of the singularity up to topological 
equivalence (for up to three order parameters at least). We should note that this 
cannot be generalised to any analytic function since the C" or Ck classification 
scheme requires many conditions quite irrelevant from the topological point of viewt. 
On the other hand a purely topological attack, as far as we know, is so far from 
mustering any force that the renormalisation group is quite unchallenged even as a 
qualitative theory of real world critical points. 

The second point we wish to make in this paper is that the rules that Griffiths has 
proposed for constructing characteristic balls are natural for such singularities as we 
have considered: the space has a natural stratification that is combinatorial. Again we 
have no comments on the purely topological problem. 

Finally we may expect to give rules for determining the types arising from sym- 
metry breaking. Basically what we need is the statement that for a finite group G 
there is a finite set of generators &, . . . , Cr for invariant polynomials, i.e. any 
invariant polynomial can be expressed as a polynomial function of these. (This is also 
true for smooth functions.) Then one can show that the local behaviour of any 
(polynomial or smooth) singularity can be expressed as a function of the above 
generators. We are not done however since the stability of such singularities has to be 
checked, i.e. entities that are unstable under the addition of higher order terms may 
become stable if required to be invariant under some group. Again in general this is a 
hard problem for higher singularities but with the requirement of thermodynamic 
stability, considerable simplifications arise. We hope to pursue this at a later date. 

t As we have remarked, for isolated critical points of homogeneous polynomials, the topological type is 
determined by the analytic type. 
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Appendix 1 

We look at the fourth order singularity 

f ( x ,  Y )  = (x' + Y 2 ) ( X 2  + a y  2, a # O , 1 ,  -1. (3 1 
We want to show this is a genuine fourth order singularity (obvious in this case but 

used as an illustration) and to compute its codimension. 
What we mean by 'genuine' fourth order is that terms of fifth order can be 

transformed away and that f ( x , y )  itself cannot be absorbed into a lower order 
singularity by a change of coordinates. Mathematicians refer to this by saying that f is 
4-determined but not 3-determined. For a homogeneous polynomial of course no 
calculation is necessary but we supply the tests for generality. 

If 

M k c l  c A(f)M2 (A.1) 
then f is k-determined. 

degree r (in two variables in our case) denoted H;. We then say M' = ( (H;  )). 
We recall that M' just means the space generated by homogeneous polynomials of 

We note 

af 
a x  a1 =- = 4x' + 2(a + 1 ) x y 2  

af 2 3 

a y  
a 2 = - =  2(a + 1 ) x  y + 4 a y  

so that A(f)M2 has six generators (obtained by multiplying (A.2) and (A.3) by 
x 2 ,  x y ,  y 2 ) .  We check first that each polynomial in the list of generators is a homo- 
geneous polynomial of degree 5 .  From the definition of M 5  we will be done if the six 
generators are a basis for the homogeneous polynomials of degree 5 (over the real 
numberst). This can be easily checked by the non-vanishing of the coordinate matrix 
with respect to any ordered basis of H: (for a # 0,1, -1). This will show that f is 
4-determined. 

To show in general that a function f is not r-determined one would have to show 
that 

M' SZ A(f)M. 64.4) 
To show that dim M/A(f) = 8 as claimed in the text we note A ( f ) s  M 3  and 

dim ( M / A ( f ) )  = dim ( M / M 2 ) +  dim ( M 2 / M 3 )  + dim (M3A(f)) 

= 5 +dim (M3/A(f)). 

Now we show that ( ( x y  ', x 2 y ,  x 2 y 2 ) )  span M/A(f) in which case they will be a basis 
for M3/A(f )* .  By writing (f)= ( ( a l ,  a2)) we see that 

x 3 = - a 1 - - - x y Z  1 l + a  
4 4 

3 1 l + ( l / a )  2 
X Y  4 

y = - a 2 -  
4 

?It may be pertinent to note for example that the 'coordinates' used in generating M' from H i  are 
polynomials. 
i That dim M3/A(f)a 3 can be checked by using that if I c M' c MA"', dim ( M ' / I ) a  dim (M'/M'+')-  k, if 
I is generated by k elements. For I = 4, we can show codim (f)a 8. 



738 R Raghavan 

so 

x3,- + l)xy mod A(f) y 3  = -(1+ l /a )x2y  mod AV). 
2 

With a little more we can show 

x3y = O  mod AV) 

Since f is fourth order, M 5  c A(f)M c AV). 
From the preceding five statements, we see that ((x’y, xy2, x2y2)) span M3/A(f). 

Our list of generators are then these and the lower order monomials: 
X,Y,X ,XY,Y YX Y,XY , x  Y ‘ 

x y  5 0 mod AV). 

2 2 2  2 2 2  

Appendix 2 

Kushnirenko (1975) has proved a theorem by which the codimension or rather the 
number p can be easily estimated for any polynomial. Here we indicate some of the 
simplest computational details. In essence the method is an adaptation of Isaac 
Newton’s for finding power series expansions for solutions of implicit equations. 

The Newton polygon (for more than two variables, polyhedron) is a convex 
polygon constructed from the exponents of the monomials in the function and in 
particular one has 

p ( f ) = n !  v - ( n - l ) !  v: + ( n - 2 ) !  v! . . .*  1 (A.5) 
for most functions f?. The notation is as follows: V is the volume of positive orthant 
under the polygon, Vi the (n - 1) dimensional volume on the ith hyperplane and so 
forth. In the case f(x, y) = x4 + (1 + a)x2y2 +ay4, V is the area under the triangle with 
vertices (0, 0), (0,4) and (4,O) and Vi are the lengths of the axes to (0,4) and (4,O). 
This gives p = 9 or codim (f) = 9 - 1 - 1 = 7 by the definition (4) in the text. 

We should note that algorithms can be provided for finding the generators of the 
singularity as well by this method but we refer to the mathematical literature for 
details (Arnol’d 1974). 
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